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The dynamic phase transition has been studied, within a mean-field approach, in the
kinetic spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic pair
interactions in the presence of a time dependent oscillating magnetic field by using the
Glauber-type stochastic dynamics. The nature (first- or second-order) of the transition is
characterized by investigating the behavior of the thermal variation of the dynamic order
parameters and as well as by using the Liapunov exponents. The dynamic phase tran-
sitions (DPTs) are obtained and the phase diagrams are constructed in the temperature
and magnetic field amplitude plane and found nine fundamental types of phase dia-
grams. Phase diagrams exhibit one, two or three dynamic tricritical points, and besides a
disordered (D) and the ferromagnetic-3/2 (F3/2) phases, six coexistence phase regions,
namely F3/2 + F1/2, F3/2 + D, F3/2 + F1/2 + F Q, F3/2 + F Q, F3/2 + F Q + D and
F Q + D, exist in which depending on the biquadratic interaction.

KEY WORDS: spin-3/2 Ising model, Glauber-type stochastic dynamics, dynamic
phase transitions, phase diagram.

PACS number(s): 05.50.+q, 05.70.Fh, 64.60.Ht, 75.10.Hk

1. INTRODUCTION

The spin-3/2 Ising model, Hamiltonian with arbitrary bilinear (J) and biquadratic
(K) nearest-neighbor interactions, has been introduced earlier(1) to give a qualita-
tive description of phase transitions observed in the compound DyVO4 within the
mean-field approximation (MFA). Subsequently, the equilibrium properties of the
model have been studied by well known methods in equilibrium statistical physics
such as the mean-field approximation, the cluster variation method, the effective
field theory, the renormalization-group techniques and Monte Carlo simulations.
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While the equilibrium properties of the model have extensively been investigated
by many different methods, the nonequilibrium properties of the model have not
been as thoroughly explored. An early attempt to study the dynamics of the model
was done by means of the Onsager’s theory of irreversible thermodynamics or the
Onsager reciprocity theorem (ORT), in particular, three relaxation times were cal-
culated and examined for the temperatures near the second-order phase transition
temperatures.(2) Recently, the nonequilibrium properties of the model were studied
by using the path probability method (PMM) with point distribution, especially the
relaxation of order parameters was investigated and the nonequilibrium behavior
of the model was also shown in a three dimensional phase space.(3) We should
also mention that a spin-3/2 Ising system containing the crystal-field interaction
(D) in addition to J interaction is often called the spin-3/2 Blume-Capel (BC)
model, and the spin-3/2 Ising model Hamiltonian with J , K and D interactions
is known as the spin-3/2 Blume-Emery-Griffiths (BEG) model. The dynamical
aspects of the spin-3/2 BC model have been studied by Grandi and Figueiredo(4)

using Monte Carlo simulations and by Keskin et al.(5) using the Glauber-type
stochastic dynamics.(6) Moreover, the DPTs in the kinetic spin-3/2 BEG model
have been studied within the Glauber-type stochastic dynamics by Canko et al.(7)

The purpose of the present paper is, therefore, to study within mean-field
approach the stationary states of the spin-3/2 Ising model Hamiltonian with only J
and K interaction in the presence of a time dependent oscillating external magnetic
field. We employ the Glauber transition rates to construct the mean-field dynamical
equations and solve these equations.(6) Especially, we investigate the time depen-
dence of average magnetization and the quadrupole moment, and the behavior of
the dynamic order parameters as a function of the temperature. In these studies,
we obtain the (DPT) points and construct the phase diagrams in the temperature
and magnetic field amplitude plane. We also calculate the Liapunov exponents to
verify the stability of solutions and the DPT points. Thus, we will find the influence
of the biquadratic exchange interaction (K). The influence of K is very important,
because it produces the ferroquadrupolar or simply the quadrupolar phase; hence
one has to consider the quadrupolar order parameters besides the magnetization.
Moreover, the equations of motion become the coupled differential equations. This
type of calculation was first applied to a kinetic spin-1/2 Ising system by Tomé and
Oliveira(8) and then used to study kinetics of a classical mixed spin-1/2 and spin-1
Ising system by Buendia and Machado,(9) kinetics of spin-1 Ising systems,(10,11)

spin-3/2 BC model by Keskin et al.(5) and kinetic spin-3/2 BEG model by Canko
et al.(7)

It is worthwhile to mention that the existence of quadrupolar interactions has
been established in several cubic rare-earth intermetallic compounds.(12) The most
obvious proof is the possibility of a quadrupolar phase transition, as observed, for
example, in TmCd(13) and TmZn.(14) Moreover, the quadrupolar interactions may
act on the nature of the magnetic phase transition in which they may change a
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second-order phase transition into a first-order one, as observed, e.g., DySb,(15)

TbP(16) or TmCu,(17) or vice versa as in PrMg2.(18) On the other hand, numerous
theoretical works have been worked out concerning the existence of dipolar and
quadrupolar phase transitions, especially in the Ising systems, such as spin-1,(19–21)

spin-3/2(1,22) and spin-2.(23) Magnetic dipolar and quadrupolar phase transitions in
cubic rare-earth intermetallic compounds have been studied in terms of single-ion
susceptibilities and within the Landau theory.(24) Recently, the quadrupolar order
in the S = 1 isotropic Heissenberg model with the biquadratic interaction has been
studied by the quantum Monte Carlo simulation.(25)

We should also mention that the (DPT) is one of the characteristic behaviors
in nonequilibrium system at the presence of an oscillating external magnetic field
and has attracted much attention recent years. The DPT was first found in a study
within a mean-field approach of the stationary states of the kinetic spin-1/2 Ising
model under a time-dependent oscillating field,(8,26) by using Glauber-type stochas-
tic dynamics,(7) and it was followed by Monte Carlo simulation, which allows the
microscopic fluctuation, and research of kinetic spin-1/2 Ising models,(27–30) as
well as further mean-field studies.(31) Moreover, Tutu and Fujiwara(32) developed
the systematic method to get the phase diagrams in DPTs, and constructed the
general theory of DPTs near the transition point based on mean-field descrip-
tion, such as Landau’s general treatment of the equilibrium phase transitions. The
DPT has also been found in a one-dimensional kinetic spin-1/2 Ising model with
boundaries.(33) Experimental evidences for the DPT have been found in highly
anisotropic (Ising-like) and ultrathin Co/Cu (001) ferromagnetic films(34) and in
ferroic system (ferromagnets, ferroelectrics and ferroelastics) with pinned do-
main walls.(35) Furthermore, we should also mention that recent researches on
the DPT are widely extended to more complex systems such as vector type order
parameter system, e.g., the Heisenberg-spin systems,(36) XY model,(37) a Ziff-
Gulari-Barshad model for CO oxidation with CO desorption to periodic variation
of the CO pressure(38) and high-spin Ising models such as kinetics of spin-1 Ising
systems,(10,11) spin-3/2 BC model(5) and spin-3/2 BEG model,(7) and kinetics of a
mixed spin Ising ferromagnetic system.(9) The DTP in model ferromagnetic sys-
tems (Ising and Heisenberg) in the presence of sinusoidally oscillating magnetic
field have been reviewed by Acharyya, recently.(39)

The outline of the remaining part of this paper is organized as follows.
In Sec. 2, the model is presented briefly and the derivation of the mean-field
(MF) dynamic equations of motion is given by using the Glauber-type stochastic
dynamics in the presence of a time-dependent oscillating external magnetic field.
In Sec. 3, stationary solutions of the coupled dynamic equations are solved and the
thermal behaviors of the dynamic order parameters are studied, and as a result, the
DPT points are calculated. Moreover, we also calculate the Liapunov exponents
to verify the stability of a solution and the DPT points. Section 4 contains the
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presentation and discussion of the phase diagrams. Finally, a summary is given in
Sec. 5.

2. THE MODEL AND DERIVATION OF MEAN-FIELD DYNAMIC

EQUATIONS OF MOTION

Since the model is a specific version of the system in Ref. 7 and the method
is the same in Ref. 7, hence we shall give a summary in here. The Hamiltonian
of spin-3/2 Ising model with arbitrary bilinear and biquadratic pair interactions is
given by

H = −J
∑

〈i j〉
Si S j−K

∑

〈i j〉

[
S2

i − 5/4
][

S2
j − 5/4

]−H
∑

i

Si , (1)

where the spin located at site i on a discrete lattice can take values ±3/2 and ±1/2
at each site i of a lattice and 〈i j〉 indicates a summation over all pairs of nearest-
neighboring sites. J and K are, respectively, the nearest-neighbor bilinear and
biquadratic exchange constants, and H is a time-dependent oscillating external
magnetic field. H is given by H (t) = H0 cos(ωt), where H0 and ω = 2πν are
the amplitude and the angular frequency of the oscillating field, respectively. The
system is in contact with an isothermal heat bath at absolute temperature.

The order parameters of the system are introduced as follows: (1) The average
magnetization m = 〈Si 〉, which is the excess of one orientation over the other
orientation, also called the dipole moment. (2) The quadrupole moment q, which
is a linear function of the average squared magnetization, i.e. q = 〈S2

i 〉 − 5/4,
which is different from the definition q = 〈S2

i 〉 used by some researchers.(40)

The first definition ensures that q = 0 at infinite temperature. (3) The octupolar
moment r, which is the odd functions of average magnetization 〈Si 〉 and defined
as r = 5/3〈S3

i 〉 − 41/12〈Si 〉. This definition also ensures that r = 0 at infinite
temperature, and this is different from the definition r = 〈S3

i 〉 used by some
researchers.(41) We should also mention that since the behavior of r is similar to
the behavior of s, we will not use r as many researchers have done.

Now, we will employ the Glauber transition rates to construct the dy-
namic equations of motion. Hence, the system evolves according to a Glauber-
type stochastic process at a rate of 1/τ transitions per unit time. We define
P = P(S1, S2, . . . Si . . . , SN ; t) as the probability that the system has the S-spin
configuration, S1, S2, . . . , SN , at time t. The time-dependence of this probability
function is assumed to be governed by the master equation which describes the
interaction between spins and heat bath and can be written as

d

dt
P = −

∑

i

⎛

⎝
∑

Si �=S′
i

Wi (Si → S′
i )

⎞

⎠P +
∑

i

⎛

⎝
∑

Si �=S′
i

Wi (S′
i → Si )P

′

⎞

⎠, (2)
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where P′ = P(S1, S2, . . . Si
′ . . . , SN ; t), Wi (Si → S′

i ), the probability per unit
time that the ith spin changes from the value Si to S′

i , and in this sense the
Glauber model is stochastic. Since the system is in contact with a heat bath at
absolute temperature T, each spin can change from the value Si to S′

i with the
probability per unit time;

Wi (Si → S′
i ) = 1

τ

exp(−β�E(Si → S′
i ))∑

S′
i
exp(−β�E(Si → S′

i ))
, (3)

where β = 1/kB T, kB is the Boltzmann factor,
∑

S′
i

is the sum over the four
possible values of S′

i , ±3/2, ±1/2 and

�E(Si → S′
i ) = −(

S′
i − Si

)
⎛

⎝H + J
∑

〈 j〉
Sj

⎞

⎠ − (
S′2

i − S2
i

)
K

∑

〈 j〉

(
S2

j − 5/4
)
,

(4)
gives the change in the energy of the system when the Si -spin changes. The
probabilities satisfy the detailed balance condition. Since Wi (Si → S′

i ) does not
depend on the value Si , we can write Wi (Si → S′

i ) = Wi (S′
i ), then the master

equation becomes

d

dt
P = −

∑

i

⎛

⎝
∑

S′
i �=Si

Wi (S′
i )

⎞

⎠ P +
∑

i

Wi (Si )

⎛

⎝
∑

S′
i �=Si

P

⎞

⎠. (5)

Since the sum of probabilities is normalized to one, by multiplying both sides of
Eq. (5) by first Sk for m and (S2

k − 5/4) for q then taking the averages; and finally
by using a mean-field approach we obtain the set of the mean-field dynamical
equations for the order parameters.

�
dm

dξ
=

−m + 3 exp(kq/T ) sinh [3(m + h cos ξ )/2T ] + exp(−kq/T ) sinh [(m + h cos ξ )/2T ]

2 exp(kq/T ) cosh [3(m + h cos ξ )/2T ] + 2 exp(−kq/T ) cosh [(m + h cos ξ )/2T ]
,

(6)

τ
dq

dt
=

−q + exp(kq/T ) cosh[3(m + h cos ξ )/2T ] − exp(−kq/T ) cosh[(m + h cos ξ )/2T ]

exp(kq/T ) cosh[3(m + h cos ξ )/2T ] + exp(−kq/T ) cosh[(m + h cos ξ )/2T ]
, (7)

where m ≡ 〈S〉, q ≡ 〈S2〉 − 5/4, ξ = ωt , T = (βz J )−1, k = K/J, h = H0/z J ,
� = τω. We fixed z = 4 and � = 2π . The Solution and discussion of these
equations are given in the next section.
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3. THERMAL BEHAVIORS OF DYNAMIC ORDER PARAMETERS

AND DYNAMIC PHASE TRANSITION POINTS

In this section, we shall first solve the set of dynamic equations and present
the behaviors of average order parameters in a period as a function of reduced
temperature, and as a result, the DPT points are calculated. Moreover, we also
calculate the Liapunov exponents to verify the stability of solutions and the DPT
points. For these purposes, first we have to study the stationary solutions of the set
of dynamic equations, given in Eqs. (6) and (7), when the parameters k, h and T are
varied. The stationary solutions of Eqs. (6) and (7) will be a periodic function of
ξ with period 2π . Moreover, they can be one of three types according to whether
they have or do not have the property

m (ξ + π ) = −m (ξ ) and q (ξ + π ) = −q (ξ ) . (8)

A solution satisfies Eq. (8) is called a symmetric solution which corresponds
to a disordered (D) solution. In this solution, the magnetization m(ξ ) always os-
cillates around the zero value and is delayed with respect to the external magnetic
field. On the other hand, the quadrupolar order parameters q(ξ ) oscillate around
a nonzero value for finite temperatures and around the zero value for the infinite
temperature due to the reason that q = 0 at the infinite temperature by the defi-
nition of q, given in Sec. 2. The second type of solution, which does not satisfy
Eq. (8), is called a nonsymmetric solution that corresponds to a ferromagnetic
solution. In this case, the magnetization and quadrupolar order parameters do not
follow the external magnetic field any more, but instead of oscillating around the
zero value; they oscillate around a nonzero value, namely m(ξ ) oscillates around
either ±3/2 or ±1/2. Hence, if it oscillates around ±3/2, this nonsymmetric
solution corresponds to the ferromagnetic ±3/2 (F3/2) phase and if it oscillates
around ±1/2, this corresponds to the ferromagnetic ±1/2 (F1/2) phase. The third
type of solution, which does satisfy the first term of Eq. (8) but does not satisfy the
second term of Eq. (8), corresponds to ferroquadrupolar or simply quadrupolar
(FQ) phase. In this solution, m(ξ ) oscillates around the zero value and is delayed
with respect to the external magnetic field and q(ξ ) does not follow the external
magnetic field any more, but instead of oscillating around the zero value, it os-
cillates around a nonzero value, namely either −1 or +1. Hence, if it oscillates
around −1, this nonsymmetric solution corresponds to the ferroquadrupolar or
simply quadrupolar (FQ) phase and if it oscillates around +1, this corresponds to
the disordered phase (D). These facts are seen explicitly by solving Eqs. (6) and
(7) numerically. Equations (6) and (7) are solved by using the numerical method
of the Adams-Moulton predictor corrector method for a given set of parameters
and initial values and presented in Fig. 1. From Fig. 1, one can see eight differ-
ent solutions, i.e., the D, F3/2 phases or solutions and six coexistence solutions,
namely the F3/2 + F1/2 in which F3/2 and F1/2 solutions coexist, the F3/2 + D in
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Fig. 1. Time variations of the magnetization (m) and the quadrupole moment (q): (a) Exhibiting
a disordered phase (D), k = 0.10, h = 1.25 and T = 1.375. (b) Exhibiting a ferromagnetic phase
(F3/2), k = 0.50, h = 0.75 and T = 0.25. (c) Exhibiting a coexistence region (F3/2 + F1/2), k = 1.0,
h = 0.075 and T = 0.125. (d) Exhibiting a coexistence region (F3/2 + D), k = 0.75, h = 1.125
and T = 0.375. (e) Exhibiting a coexistence region (F3/2 + F1/2 + F Q), k = 1.0, h = 0.35 and
T = 0.05. (f) Exhibiting a coexistence region (F3/2 + F Q), k = 0.50, h = 0.50 and T = 0.125.g
Exhibiting a coexistence region (F3/2 + F Q + D), k = 0.75, h = 1.125 and T = 0.125. (h) Exhibiting
a coexistence region (F Q + D), k = 2.0, h = 1.75 and T = 0.75.
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Fig. 1. Continued

which F3/2 and D solutions coexist, the F3/2 + F1/2 + F Q in which F3/2, F1/2

and FQ solutions coexist, the F3/2 + F Q in which F3/2 and FQ solutions coexist,
the F3/2 + F Q + D in which F3/2, FQ, and D solutions coexist and the F Q + D
in which FQ and D solutions coexist, exist in the system. In Fig. 1(a) only the
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symmetric solution is always obtained, hence, we have a disordered (D) solution,
but in Fig. 1(b), only the nonsymmetric solution is found; therefore, we have a
ferromagnetic (F3/2) solution. These solutions do not depend on the initial values.
In Fig. 1(c), we have the nonsysmmetric solution for m(ξ ) and q(ξ ), because m(ξ )
oscillates around either ±3/2 or ±1/2 values and q(ξ ) around ±1, hence we have
the coexistence solution (F3/2 + F1/2). In Fig. 1(d), m(ξ ) oscillates around either
±3/2 or zero values and q(ξ ) around +1. As explained above, the solution of
q(ξ ) which oscillates around +1 does not give a phase transition, see also Fig.
2(c) and it corresponds to the D phase, hence we have the coexistence solution
(F3/2 + D). In Fig. 1(e), m(ξ ) oscillates around ±3/2, ±1/2 or zero values and q(ξ )
around ±1, hence we have the coexistence solution (F3/2 + F1/2 + F Q). More-
over, in Fig. 1(f)–(h) we have the F3/2 + F Q, F3/2 + F Q + D and F Q + D coex-
istence solutions, respectively. We should also mention that the solutions shown in
Fig. 1(c)–(h) depend on the initial values.

Thus, Fig. 1 displays that we have eight phases in the system, namely D,
F3/2, F3/2 + F1/2, F3/2 + D, F3/2 + F1/2 + F Q, F3/2 + F Q, F3/2 + F Q + D and
F Q + D solutions or phases. In order to see the dynamic boundaries among these
eight phases, we have to calculate DPT points and then we can present phase
diagrams of the system. DPT points will be obtained by investigating the behavior
of the average order parameters in a period or the dynamic order parameters as
a function of the reduced temperature. These investigations will also be checked
and verified by calculating the Liapunov exponents.

The dynamic order parameters, namely the dynamic magnetization (M) and
the dynamic quadruple moment (Q), are defined as

M = 1

2π

2π∫

0

m(ξ ) dξ and Q = 1

2π

2π∫

0

q(ξ )dξ. (9)

The behaviors of M and Q as a function of the reduced temperature for several
values of h and k are obtained by combining the numerical methods of Adams-
Moulton predictor corrector with the Romberg integration, and some results are
plotted in Fig. 2(a)–(f) in order to illustrate the calculation of the DPT and the
dynamic phase boundaries among eight phases, as a few examples. In the figures,
thick and thin lines represent M and Q, respectively; TC and Tt are the critical or
the second-order phase transition and first-order phase transition temperatures for
both M and Q, respectively and Tt Q is the first-order phase transition temperatures
for only Q. Figure 2(a) represents the reduced temperature dependence of the
dynamic order parameters, M and Q, for k = 0.10 and h = 0.10. In this case,
M and Q decrease to zero continuously as the reduced temperature increases,
therefore a second-order phase transition occurs and the phase transition is from
the F3/2 phase to the D phase. Figure 2(b) and (c) show the behavior of M and Q as
a function of the reduced temperature for k = 0.10 and h = 1.25 for two different
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initial values; i.e., the initial value of M and Q are taken 3/2 and 1.0, respectively for
Fig. 2(b) and M = 0 and Q = 1.0 for Fig. 2(c). In Fig. 2(b), both M and Q undergo
a first-order phase transition, because M and Q decrease to zero discontinuously as
the reduced temperature increases and the phase transition is from the F3/2 phase
to the D phase. Figure 2(c) shows that M always equals to zero and Q = 1.0 at
zero temperature but does not undergo any phase transition and this implies that
the nonsymmetric solution of q(ξ ) that oscillates around +1; hence this figure
corresponds to the D phase. From Fig. 2(b) and (c), one can see that the system
exhibits the F3/2 + D coexistence phase region, compare Fig. 2(b) and (c), with
Fig. 4(a). Figure 2(d)–(f) illustrate the thermal variations of M and Q for k = 0.75
and h = 0.35 for three different initial values; i.e., the initial values: M = 3/2,
Q = 1.0 for Fig. 2(d), and M = 1/2and Q = −1.0 for Fig. 2(e), and M = 0 and
Q = −1.25 for Fig. 2(f). The behavior of Fig. 2(d) is similar to Fig. 2(b), hence the
system undergoes a first-order phase transition from the F3/2 phase to the D phase.
In Fig. 2(e), the system undergoes three successive phase transitions, the first one is
a second-order from the F1/2 phase to the FQ phase, the second one is a first-order
from the FQ phase to the F3/2 phase and the third one is also a first-order phase
transition from the F3/2 phase to the D phase. In Fig. 2(f), the system undergoes four
successive phase transitions, the first one is a first-order from the FQ phase to the
F1/2 phase, the second one is a second-order from the F1/2 phase to the FQ phase,
the third one is a first-order phase transition from the FQ phase to the F3/2 phase
and the fourth one is also a first-order phase transition from the F3/2 phase to the
D phase. These three figures imply that the system exhibits the F3/2 + F1/2 + F Q
coexistence region or phase for very low values of temperature, then the F3/2 +
F1/2 phase, then the F3/2 + F Q phase, then the F3/2 phase, then the F3/2 + D

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. The reduced temperature dependence of the dynamic magnetization (M) (the thick solid line)
and the dynamic quadruple moment (Q) (the thin solid line). TC and Tt are the critical or the second-
and the first-order phase transition temperatures for both M and Q, respectively and Tt Q is the first-
order phase transition temperature for only Q. (a) Exhibiting a second-order phase transition from the
F3/2 phase to the D phase for k = 0.1 and h = 0.10; 1.255 is found TC . (b) Exhibiting a first-order
phase transition from the F3/2 phase to the D phase for k = 0.1 and h = 1.25; 0.275 is found Tt .
(c) The system does not undergo any phase transition and corresponds to the D phase; k = 0.1 and
h = 1.25. (d) Exhibiting a first-order phase transition from the F3/2 phase to the D phase for k = 0.75
and h = 0.35; 1.265 is found Tt . (e) Exhibiting three successive phase transitions, the first one is a
second-order from the F1/2 phase to the FQ phase, the second one is a first-order from the FQ phase
to the F3/2 phase and the third one is also a first-order phase transition from the F3/2 phase to the D
phase for k = 0.75 and h = 0.35; 0.150, 0.515 and 1.245 found TC , Tt Q and Tt , respectively. Q makes
a peak at TC , seen in the insert figure. (f) Exhibiting four successive phase transitions, the first one is a
first-order from the FQ phase to the F1/2 phase, the second one is a second-order from the F1/2 phase
to the FQ phase, the third one is a first-order phase transition from the FQ phase to the F3/2 phase and
the fourth one is also a first-order phase transition from the F3/2 phase to the D phase for k = 0.75 and
h = 0.35; 0.08, 0.150, 0.575 and 1.245 found Tt , TC , Tt Q and Tt , respectively.
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phase and finally D phase for very high values of the temperature. These facts are
seen clearly in the phase diagram of Fig. 4(f) for h = 0.35 exists.

Now we can check and verify the stability of solutions, and as well as the
DPT points by calculating the Liapunov exponents. If we write Eq. (9) as

�
dm

dξ
= F1(m, ξ ) and �

dq

dξ
= F2(q, ξ ), (10)

then the Liapunov exponents λm and λq are given by

�λm = 1

2π

2π∫

0

∂ F1

∂m
dξ and �λq = 1

2π

2π∫

0

∂ F2

∂q
dξ . (11)

When λm < 0 and λq < 0, the solutions are stable. We have two Liapunov expo-
nents, namely, one is associated to the symmetric solution, λms and λqs , and the
other to the nonsymmetric solution, λmn and λqn , for both m and q. If λmn and λms

increase to zero continuously as the reduced temperature approaches the phase
transition temperature, the temperature where λmn = λms = 0 is the second-order
phase transition temperature, TC . Moreover, if the Liapunov exponents for q, e.g.,
λqn′ and λqn′′ in Fig. 3(b), increase continuously as the reduced temperature ap-
proaches to the phase transition temperature and then the temperature where the
Liapunov exponents make a cusp is the second-order phase transition temperature,
TC . The reason that Liapunov exponents for q are not zero at TC due to the reason
that Q is not zero at TC and it is zero at infinite temperature, as mentioned in
Sec. 2. On the other hand, if the Liapunov exponents approach the phase transi-
tion temperature, the temperature at which the Liapunov exponents make a jump
discontinuity is the first-order phase transition temperature. In order to see these
behaviors explicitly, the values of the Liapunov exponents are calculated and plot-
ted as a function of reduced temperature for k = 0.75 and h = 0.35 (these values
correspond to Fig. 2(e) because the initial value of M and Q are taken +1/2 and
−1.0, respectively), seen in Fig. 3. In the figure, the thick and thin lines represent
the λs and λn , respectively. In Fig. 3, the system undergoes three successive phase
transitions: The first one is a second-order, because λmn′ = λms = 0 at TC = 0.150
(λmn′ corresponds to the F1/2 phase), seen in Fig. 3(a), the second one is a first-
order, because of λms and λmn make a jump discontinuity at Tt Q = 0.515 (λmn

corresponds to the F3/2 phase), and the third one is also a first-order phase transi-
tion, because of λmn and λms make a jump discontinuity at Tt = 1.245. Figure 3(b)
illustrates the behavior of Liapunov exponents for q. It is seen from this figure that,
first λqn′ and λqn′′ make a cusp, hence; the second-order phase transition temper-
ature occurs at TC = 0.150 (λqn′ and λqn′′ correspond to the F1/2 and FQ phases,
respectively); then both λqn′′ and λqn make a jump discontinuity, hence we have
the first-order phase transition at Tt Q = 0.515 (λqncorresponds to the F3/2 phase);
and finally, λqn and λqs make a jump discontinuity again, hence the first-order
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Fig. 3. The values of the Liapunov exponents as a function of the reduced temperature (T) for k = 0.75
and h = 0.35. The thick and thin lines represent the λs and λn , λn′ , respectively, and TC are the critical
or the second-order phase transition for both M and Q, respectively and Tt Q is the first-order phase
transition temperatures for only Q. (a) The behavior of the Liapunov exponents as a function of T for
m. The system undergoes three successive phase transitions: The first one is a second-order, because
λmn′ = λms = 0 at TC = 0.150 (λmn′ corresponds to the F1/2 phase), the second one is a first-order,
because of λms and λmn make a jump discontinuity at Tt Q = 0.515 (λmn corresponds to the F3/2

phase), and the third one is also a first-order phase transition, because of λmn and λms make a jump
discontinuity at Tt = 1.245. (b) Same as (a), but for q. First λqn′ and λqn′′ make a cusp, see the
inset figure; hence the second-order phase transition temperature occurs at TC = 0.150 (λqn′ and λqn′′
corresponds to the F1/2 and FQ phases); then two first-order transitions occur at Tt Q = 0.515 and
Tt = 1.245, because both λqn′′ , λqn (λqn corresponds to the F3/2 phase), and λqn , λqs make a jump
discontinuity.
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phase transition temperature occurs at Tt = 1.245. If one compares Fig. 3 with
Fig. 2(e), one can see that TC , Tt Q and Tt found by using the both calculations are
exactly the same. Moreover, we have also verified the stability of the solution by
this calculation, because we have always found that λm < 0 and λq < 0.

Finally, it is worthwhile to mention that the oscillating external magnetic field
induces the DPT points, because if one has done the calculations for the reduced
external static magnetic field amplitude h, one can see that the system does not
undergo any phase transitions. This fact was illustrated in the recent work,(10) seen
Fig. 6 of Ref. 10.

4. PHASE DIAGRAMS

Since we have obtained and verified the DPT points in Sec. 3, we can now
present the phase diagrams of the system. The calculated phase diagrams in the
(T, h) plane are presented in Fig. 4 for various values of k. In these phase diagrams,
the solid and dashed lines represent the second- and first-order phase transition
lines, respectively and the dynamic tricritical point is denoted by a filled circle. As
seen from the figure, the following nine main topological different types of phase
diagrams are found.

(i) For 0 < k ≤ 0.190, Fig. 4(a) represents the phase diagram in the (T, h)
plane for k = 0.10. In this phase diagram, at high reduced temperature (T)
and reduced external magnetic field (h), the solutions are disordered (D)
and at low values of T and h, they are ferromagnetic −3/2 (F3/2). The
boundary between these regions, F3/2 → D, is the second-order phase
line. At low reduced temperatures, there is a range of values of h in
which the D and the F3/2 phases or regions coexist, called the coexistence
region, F3/2 + D. The F3/2 + D region is separated from the F3/2 and
the D phases by the first-order phase line. The system also exhibits only
one dynamic tricritical point where both first-order phase transition lines
merge and which signals the change from the first- to the second-order
phase transitions. Finally, we should also mention that very similar phase
diagrams were also obtained in the kinetic spin-1/2 Ising model,(8) in the
kinetic spin-1 BC model,(10) the kinetics of the mixed spin-1/2 and spin-1
Ising ferrimagnetic system(9) in the kinetic spin-3/2 BC model(5) and as well
as in the kinetic spin-3/2 BEG model.(7) The reason why the phase diagram
is similar to the one obtained for the kinetic spin-1/2 Ising and spin-1 BC
models is due to the competition between J, K and h. If 0 < k ≤ 0.190, the
Hamiltonian of spin-3/2 model gives similar results to the Hamiltonian of
spin-1/2 Ising and spin-1 BC models. This can explicitly be seen from the
ground state phase diagrams of these three models.
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Fig. 4. Phase diagrams of the spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic
pair interactions in the (T, h) plane. The disordered (D), ferromagnetic-3/2 (F3/2), and six different
the coexistence regions, namely the F3/2 + F1/2, F3/2 + F Q, F3/2 + D, F3/2 + F1/2 + F Q, F3/2 +
F Q + D and F Q + D regions, are found. Dashed and solid lines represent the first- and second-order
phase transitions, respectively, and the dynamic tricritical points are indicated with filled circles. (a)
k = 0.10, (b) k = 0.30, (c) k = 0.35, (d) k = 0.50, (e) k = 0.70, (f) k = 0.75, (g) k = 1.0, (h) k = 2.0
and (i) k = 4.0.
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Fig. 4. Continued

(ii) For 0.190 < k ≤ 0.319, we performed the phase diagram at k = 0.30, seen
in Fig. 4(b). This phase diagram is similar to Fig. 4(a) but only differs from
Fig. 4(a) in which low values of T, and the certain range values of h, the
F3/2 + F Q phase or coexistence region also exist. The dynamic phase
boundary between this F3/2 + F Q region and the F3/2 phase is the first-
order line. Very similar phase diagram has also been found in the kinetic
spin-3/2 BEG model.(7)

(iii) For 0.319 < k ≤ 0.470, we performed the phase diagram for k = 0.35,
seen in Fig. 4(c), and is similar to the case (ii), except that the F3/2 + F1/2

phase occurs for very low values of T and h. The dynamic phase boundary
between the F3/2 + F1/2 phase and the F3/2 phase is also the first-order
line. The similar phase diagram has also found in the kinetic spin-3/2 BEG
model.(7)



Dynamic Dipole and Quadrupole Phase Transitions 375

(iv) For 0.470 < k ≤ 0.610, in this type the phase diagram is presented for
k = 0.50, seen in Fig. 4(d). While this phase diagram has the same phase
topology as the diagram in Fig. 4(c), but only differs from Fig. 4(c) in which
the F3/2 + F1/2 and F3/2 + F Q phases or coexistence regions become
large and the certain range of h they overlap each other, hence one more
coexistence region, namely the F3/2 + F1/2 + F Q phase also exists. The
dynamic phase boundaries among these coexistence regions are all first-
order line. The similar phase diagram has also been found in the kinetic
spin-3/2 BEG model.(7)

(v) For 0.610 < k ≤ 0.730, the phase diagram is obtained for k = 0.70, seen
in Fig. 4(e). This is the most interesting phase diagram in which the system
exhibits three dynamic tricritical points and also five coexistence regions
or phases, namely F3/2 + F1/2, F3/2 + F Q, F3/2 + F1/2 + F Q, F3/2 +
F Q + D and F3/2 + D. The dynamic boundaries among these coexistence
phases are first-order lines, except the boundary between the F3/2 + F1/2

and the F3/2 + F Q phases, this boundary is a second-order line. Since,
the boundary between the F3/2 + F1/2 and F3/2 + F1/2 + F Q, and also
between the F3/2 + F1/2 + F Q and the F3/2 + F Q are first-order lines,
the system exhibits a dynamic tricritical point for low values of T and h.
Moreover, the dynamic phase boundary between the F3/2 and the D phases
is a first-order for low values of h and a second-order line for high values
of h; hence we have a second dynamic tricritical point. A third dynamic
tricritical point occurs in similar places as in the previous phase diagrams.

(vi) For 0.730 < k ≤ 0.790, we performed the phase diagram at k = 0.75, seen
in Fig. 4(f). This phase diagram is similar to Fig. 4(e), except one more
F3/2 + D phase occurs for low values of h and high values of T. The
dynamic phase boundaries between this F3/2 and the F3/2 + D phases and
also between the F3/2 + D and the D phases are first-order phase lines.

(vii) For 0.790 < k ≤ 1.60, in this type of the phase diagram is presented for
k = 1.0, seen in Fig. 4(g) and is similar to the type (vi), except that the
F3/2 + F Q region becomes large and the F Q + D phase appears at low
values of T and high values of h. The similar phase diagram has also been
found in the kinetic spin-3/2 BEG model.(7)

(viii) For 1.60 < k ≤ 2.10, we performed the phase diagram at k = 2.0, seen in
Fig. 4(h). This phase diagram is similar to Fig. 4(g) except following dif-
ferences: (1) The F3/2 phase and the F3/2 + D coexistence phase regions,
which occur in two different places, disappear. (2) The F Q + D phase
region becomes very large; hence it also appears for high values of T and
low values of h. The dynamic phase boundary between the F Q + D and
the D phase is the first-order phase line.

(ix) For k > 2.10, the phase diagram is constructed for k = 4.0, illustrated
in Fig. 4(i), and is similar to type (viii), but only differs from case (viii)
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in which the first-order line that occurs for the low values of h and high
values of T and separates the F3/2 + F Q phase from the F Q + D phase
disappears. Therefore, the dynamic tricritical point that exists for low
values of h and high values of T also disappears and the system exhibits
only two dynamic tricritical points.

Finally, we should point out that Fig. 4(e), (f), (h) and (i) are the new phase
diagrams that have been obtained in this model.

5. SUMMARY

We have analyzed within a mean-field approach the stationary states of the
kinetic spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic
pair interactions in the presence of a time-dependent oscillating external magnetic
field. We employ the Glauber transition rates to construct the mean-field dynamical
equations. We have studied the behavior of the time-dependence order parameters,
namely magnetization or the dipole moment and the quadruple moment in a
period, also called the dynamic magnetization and dynamic quadruple moment, as
a function of reduced temperature. The DPT points are found by investigating the
behavior of the dynamic order parameters as a function of the reduced temperature.
Finally, we present the phase diagrams in the (T, h) plane. We found that the
behavior of the system strongly depends on the values of k and nine different
phase diagram topologies are found. The phase diagrams exhibit the D, F3/2

and/or the F3/2 + F1/2, F3/2 + D, F3/2 + F Q, F3/2 + F1/2 + F Q, F3/2 + F Q +
D and/or F Q + D coexistence regions depending on k values and the dynamic
phase boundaries among these phases and coexistence phase regions are mostly
first-order lines, except the boundary between the F3/2 and D phases and this
boundary mostly is a second-order, seen in Fig. 4. Moreover, the dynamic phase
boundaries between the F3/2 + F1/2 and F3/2 + F Q phases are mostly second-
order lines. Therefore, one, two or three dynamic tricritical points also occur. We
have also calculated the Liapunov exponents to verify the stability of solutions
and the DPT points.

We should also mention that although similar phase diagram of Fig. 4(a)
has been obtained for kinetic spin-1/2 Ising model,(8) the kinetics of a mixed Ising
ferrimagnetic system,(9) the kinetic spin-1 BC model,(10) kinetic spin-3/2 BC(5) and
spin-3/2 BEG models,(7) and a similar phase diagram of Fig. 4(b)–(d) and (g) have
been only found in kinetic spin-3/2 BEG model;(7) the phase diagrams of Fig. 4(e),
(f), (h) and (i), i.e. four phase diagrams, are the new type of phase diagrams in
which have been only obtained in this model, namely the kinetic spin-3/2 Ising
model Hamiltonian with arbitrary bilinear and biquadratic pair interactions in the
presence of a time dependent oscillating magnetic field by using the Glauber-type
stochastic dynamics.
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Finally, it is worthwhile to mention that there is a strong possibility that at
least some of the first- order transitions and multicritical points seen in the mean-
field results are very likely artifacts of the approximation. This is because, for field
amplitude less than the coercive field (at the temperature less than the static ferro-
para (or order-disorder) transition temperature), the response magnetization and as
well as the quadrupolar moment vary periodically but asymmetrically even in the
zero-frequency limit; the system may remain locked to one well of the free energy
and can not go to the other well, in the absence of noise or fluctuations [27(a),
28(d), 29, 31(a and c), 42]. However, this mean-field dynamic study suggests that
the spin-3/2 Ising model Hamiltonian with arbitrary bilinear and biquadratic pair
interactions in the presence of a time dependent oscillating external magnetic
field has an interesting dynamic behavior, quite different from the standard Ising
model. Therefore, it would be worthwhile to further study it with more accurate
techniques such as dynamic Monte Carlo simulations or renormalization group
calculations.
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